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LIQUID CRYSTALS, 1993, VOL. 14, No. 1, 227-263 

Invited Lecture 
Microstructure and dynamics in lyotropic liquid crystals 

Principles and applications of nuclear spin relaxation 

by BERTIL HALLE*, PER-OLA QUIST and ISTVAN FUR0 
Condensed Matter Magnetic Resonance Group, 

Physical Chemistry 2, Lund University, 
P.O. Box 124, S-22100 Lund, Sweden 

Nuclear spin relaxation of quadrupolar nuclei provides access to a wide range of 
properties of lyotropic liquid crystals, ranging from the molecular ordering and 
dynamics at the interface to the macroscopic viscoelastic behaviour. We emphasize 
here the unique capability of the spin relaxation method to provide detailed 
geometric and dynamic information relating to the microstructure of lyotropic 
liquid crystals, i.e. the metric, curvature, and fluctuations of the dividing interface 
that separates polar and non-polar regions. This information is conveyed to the spin 
system via the translational diffusion of surfactants or counterions over the 
interface. The general principles of the spin relaxation method, as applied to 
lyotropic liquid crystals, are described, with emphasis on the model-independent 
information content of the relaxation observables and on the relation to microstruc- 
ture. Specific results for lamellar, hexagonal, cubic, and nematic phases are also 
described. 

1. Introduction 
Lyotropic liquid crystals present a wider repertoire of phase behaviour than any 

other state of matter [l-101. The catalogue of lyotropic mesophases is steadily 
growing, now comprising more than a dozen crystallographically distinct phases. For 
example, the binary systems sodium dodecyl sulphate/water [ 113 and potassium 
palmitate/water [ 121 each features six distinct mesophases. Ternary lyotropic systems 
exhibit an even greater phase variety; for example, there are three distinct nematic 
phases in the system potassium laurate/water/decanol [ 131 and five distinct cubic 
phases in the system didodecyldimethyl ammonium bromide/water/styrene [14J 

The rich phase polymorphism of lyotropic liquid crystals is related to the fact that 
they are association colloids; surfactant self-assembly leads to a hierarchy of structural 
organization. At the highest level are the rotational and translational symmetries that 
determine the crystallographic space group of the mesophase. At the intermediate level 
is the microstructure, which may be defined as the topology and local geometry 
(dimensions and curvatures) of the dividing interface that separates polar and non- 
polar regions. The microstructure can be radically different in phases belonging to the 
same space group. In fact, the microstructure can even vary (qualitatively) within a 
given phase, in response to changes in temperature and composition [15-241. Such 
variations may be generally viewed as intrinsic (thermodynamically stable) structural 
defects, as opposed to metastable (for example, domain boundaries) and surface 
induced (for example, focal conics) [25] defects. The microstructure may also be taken 
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228 B. Halle et al. 

to include thermal fluctuations on supramolecular length scales, for example, smectic 
bilayer undulations and orientational disorder of nematic aggregates. 

At the lowest level of the structural hierarchy is the molecular ordering of the 
various components with respect to the local interface, for example, the orientational 
order of surfactant chains and interfacial water, and the spatial inhomogeneity in the 
counterion distribution. These local properties of lyotropic liquid crystals are by now 
reasonably well understood. In the following we focus instead on the microstructure, 
which is far less completely understood. 

Among the numerous experimental techniques that have contributed to the 
understanding of lyotropic liquid crystals, scattering experiments (thermal neutrons, 
X-rays, and visible light) and nuclear magnetic resonance (NMR) are probably the most 
powerful and versatile ones. Both techniques can furnish information about each of the 
three levels of structural organization, but in a complementary way; they are often 
profitably used in conjunction. 

The NMR experiments that have been used to study lyotropic liquid crystals can be 
broadly classified into three categories. Lineshape studies are now used routinely to 
distinguish between cubic, uniaxial, and biaxial mesophases and between calamitic and 
discotic nematic phases and to monitor the nature and degree of phase alignment in 
macroscopically oriented samples. In non-cubic phases, the lineshape, in particular the 
static splitting, contains information about all three levels of organization. In general it 
is not possible to separate this information, but if the microstructure is known, the local 
molecular ordering can be characterized [7,26-291. Conversely, if the local contri- 
bution can be estimated (for example, from measurements on another mesophase), 
information about the microstructure can be derived from the diffusional averaging of 
the lineshape. This approach is particularly informative for biaxial phases [30-331, 
since the powder lineshape then involves two independent microstructure-related 
parameters. In polymerized lyotropic mesophases, where surface diffusion of surfactant 
molecules is prevented, the lineshape provides an even more detailed picture of the 
microstructure [34]. 

The second type of NMR experiment is the (pulsed) field gradient spin echo 
experiment, used for diffusion studies [35-371. Such measurements can yield the 
principal components of the macroscopic diffusion tensor for the various molecular 
species in the mesophase C38-411. Since this experiment measures displacements over 
macroscopic distances (typically, several pm) it can provide information about the 
microstructure, which imposes constraints on the diffusion paths. In particular, 
diffusion studies can often be used to establish the topology of the microstructure, i.e. 
whether the polar or apolar regions are closed or macroscopically continuous in one, 
two, or three dimensions. 

The third type of NMR experiment is thc nuclear spin relaxation experiment, which 
is our main concern here. Among the three types of NMR experiment, this is potentially 
the most informative, but the most demanding. The spin relaxation behaviour reflects 
structure as well as dynamics at all three levels of the hierarchy. Since the pioneering 
work of Charvolin and Rigny 20 years ago [42], most spin relaxation studies of 
lyotropic liquid crystals have focused on ordering and dynamics at the molecular level 
in phases of known microstructure C43-5 11. Most relaxation studies of phospholipid 
bilayers [52-611 also belong to this category. Our present concern, however, is with 
spin relaxation studies that focus on microstructure and surface diffusion in lyotropic 
liquid crystals. About a dozen such studies, of cubic [62-671, hexagonal [C8-701, 
lamellar [71], and nematic [72,73] mesophases, have so far been reported. 
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Invited Lecture: Lyotropic and nuclear spin relaxation 229 

Much of the experimental sophistication required for spin relaxation studies of 
lyotropic liquid crystals utilizing spin I = 1 nuclei, such as 'H and 14N, was developed 
in connection with studies of polymers [74], thermotropic liquid crystals [75,76], and 
biological membranes [53,55]. Nuclei of higher spin, mainly counterion nuclei with 
I = 312, 512, and 712, are also of interest, and spin relaxation experiments appropriate 
for such high spin nuclei have recently been devised [77-81). In $ 2  we discuss the 
nature of the spin relaxation observables and some of the methods used to measure 
them. 

As discussed in $3, the spin relaxation depends on the orientation of the 
(macroscopically aligned) liquid crystal with respect to the static magnetic field and it is 
only by studying this relaxation anisotropy that the full information content accessible 
by spin relaxation can be disclosed. The amount of available information is dictated by 
the point group symmetry of the liquid crystal. In a uniaxial mesophase, for example, 
nine distinct model-independent quantities can be determined from spin relaxation 
experiments at a single magnetic field. Field variation, of course, yields additional 
information. 

In #4 and 5 we describe how spin relaxation experiments provide information 
about microstructure in lyotropic liquid crystals. The basic idea is to study nuclei 
residing in surfactant molecules or counterions that are effectively confined to the 
interface. Quadrupolar spin relaxation is due to fluctuations of the orientation and 
magnitude of the electric field gradient tensor at the nuclear site [82]. The local motions 
project this tensor on to the local interface normal and as the spin-bearing species 
diffuses over the curved interface the orientation of the residuai (projected) field 
gradient fluctuates, thereby inducing spin relaxation. Since the amplitude and rate of 
these fluctuations depend on the geometry of the interface, surface diffusion reflects the 
microstructure of the mesophase. Fluctuations of the microstructure itself, such as 
nematic director fluctuations, also contribute to the spin relaxation (see $ 6 )  as do 
various kinds of local motion. Fortunately, the time scales of these processes are 
sufficiently different that their contributions to the spin relaxation can be separated. 

Finally, in § 7, we illustrate the general principles outlined in $0 2-6 by specific case 
studies taken from each of the four basic types of lyotropic liquid crystal: nematic 
mesophases and translationally ordered mesophases periodic in one, two, and three 
dimensions. 

2. Relaxation observables 
2.1. Nuclear quadrupole coupling in anisotropic fluids 

Most lyotropic liquid crystals present the NMR spectroscopist with a choice of 
nuclear isotopes suitable for spin relaxation experiments. To be a sensitive probe of 
microstructure, the nucleus should be effectively confined to the interface. In practice 
this restricts the choice to (i) surfactant headgroup nuclei (for example, 14N), 

(ii) counterion nuclei (for example, 23Na), and (iii) 'H nuclei selectively introduced in 
the a-position (next to the headgroup) of the surfactant alkyl chain. 

The nuclei ofinterest, such as 'H, 14N, and 23Na (along with most other counterion 
nuclei) have either spin I = 1 or half-integral spin I >  312 and are coupled to the 
molecular degrees of freedon via the interaction of the nuclear electric quadrupole 
moment with the electric field gradient generated by the surrounding charge 
distribution [82]. This quadrupole coupling conveys to the spin system a wealth of 
structural and dynamic information. 
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The first order effect of the quadrupole coupling is to shift the Zeeman energy levels, 
thereby splitting the resonance line of a spin-1 nucleus into 21 equidistant lines. This 
quadrupole splitting, which occurs in mesophases of lower than cubic symmetry, 
contains information about the microstructure in the phase. In all but the simplest 
cases, however, the quadrupole splitting yields a non-separable product of quantities 
related to the different levels of the structural hierarchy. The 'H quadrupole splitting 
from an a-deuteriated surfactant in a uniaxial nematic phase, for example, is a product 
of (i) a parameter describing the local order of the C-D bond with respect to the 
aggregate surface, (ii) a geometrical factor reflecting the aggregate shape, and (iii) a 
parameter describing the orientational ordering of the surfactant aggregates compris- 
ing the nematic fluid [27]. These factors cannot be separated without recourse to 
additional data, for example, spin relaxation rates [72]. 

The principal second order effect of the quadrupole coupling is to induce spin 
relaxation, characterized by spin relaxation rates. Most familiar are the longitudinal 
and transverse relaxation rates R ,  and R, associated with the magnetization vector 
components parallel and perpendicular, respectively, to the static magnetic field. While 
R,  and R, suffice to describe the relaxation behaviour of 1 = 1 nuclei in isotropic fluids, 
more rate constants are in general needed for 1 > 1 nuclei and (even for 1 = 1 nuclei) in 
anisotropic fluids such as liquid crystals. This complication, which greatly enhances the 
potential of the spin relaxation technique, arises because a system of spin-1 nuclei 
admits non-equilibrium states with magnetic tensor polarization [83,84] of rank k = 1, 
2, .  . . , 21, where k = 1 is the usual vector (dipole) magnetization. In non-cubic liquid 
crystals (with a non-zero quadrupole splitting) spin states of any rank up to 21 can be 
produced, whereas in cubic liquid crystals and isotropic fluids only states of odd tensor 
rank can exist. The various spin states can be formally described in terms of spherical 
multipoles of rank k and projection index q = 0, & 1,. . . , f k. The axial (q = 0) multipole 
components, referred to as polarizations or alignments, are the generalizations of the 
longitudinal magnetization (k = 1, q = 0). The remaining (q  # 0) multipole components, 
referred to as q-quantum coherences, are the generalizations of the transverse 
magnetization (k = 1, q = f 1). 

2.2. Time correlation functions and spectral densities 
All the information about liquid crystal microstructure and dynamics that can be 

derived from the spin relaxation rates is contained in time correlation functions (TCFs) 
of the form 

G[k, (T)  = (vy(o)v[,(T)) - (vy)( vt,), (2.1) 

where V,"(z) is the kth spherical component with respect to a lab-fixed frame (where the 
static magnetic field defines the z axis) of the electric field gradient (EFG) tensor. We 
assume that the standard second order spin relaxation theory is valid [82], and that the 
quadrupole coupling is the only source of spin relaxation. 

The (stochastic) time dependence of the EFG components reflects thermal motions 
in the liquid crystal. Since the EFG tensor is of rank two, there are 25 TCFs of the form 
of equation (2.1) (k,k' =0, & 1, f 2). Time reversal invariance reduces this number to 15. 
Considerations of rotational symmetry lead to further simplification. In an isotropic 
fluid, there is only one distinct TCF, whereas in a uniaxial liquid crystal aligned with the 
static magnetic field there are three: the diagonal TCFs Gik(z) with k = 0, 1,2. For a 
liquid crystal of arbitrary symmetry and orientation, the off-diagonal TCFs do not 
vanish by symmetry. However, as long as the spin relaxation rates and the residual 
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Invited Lecture: Lyotropic and nuclear spin relaxation 23 1 

quadrupole coupling are small compared to the Larmor frequency, which is the case 
except in extremely weak magnetic fields, the off-diagonal TCFs can be neglected 
(‘secular approximation’), so that only the three diagonal TCFs G14,(~) remain [SS]. 

Under the rather mild conditions stipulated above, the entire spin relaxation 
behaviour is governed by the three lab-frame spectral densities (LFSDs) 

J&(kWo) = I m  d7 COS (kwoz) Gkk(7). (2.2) 
0 

The adiabatic (zero frequency) spectral density Jko(0)  contains contributions from 
motions on all time scales (within the motional narrowing regime [82]), while the non- 
adiabatic spectral densities Jf,(wo) and J$,(20,) are affected only by motions on the 
time scale of the inverse Larmor frequency l/oo or faster. 

2.3. Spin relaxation rates 
The theoretical description of a spin relaxation experiment accounting for the spin 

dynamics during radio-frequency (RF) pulses and during periods of free evolution, is 
particularly simple if (i) the RF pulses are non-selective (hard), which usually implies 
that the quadrupole splitting is small compared to the Larmor frequency, and (ii) the 
quadrupole splitting is large compared to the non-adiabatic linewidths (cf. below). (For 
cubic mesophases, less restrictive conditions apply.) Under these conditions, which are 
usually satisfied in studies of lyotropic liquid crystals, the RF pulses simply rotate the 
state multipoles, i.e. they mix the quantum order q without affecting the tensor rank k, 
whereas free evolution (under the quadrupole hamiltonian) mixes the rank without 
affecting the quantum order [83,84]. In non-cubic liquid crystals the evolution of the 
polarizations (q = 0) thus involves 21 generalized longitudinal relaxation rates. Among 
these 21 rates, I + 1/2 describe the (coupled) evolution of the odd-rank polarizations 
and I - 1/2 describe the (coupled) evolution of the even-rank polarizations [78]. This 
applies to half-integral I ;  for I = 1 there is one odd-rank (Zeeman) and one even-rank 
(quadrupolar) longitudinal relaxation rate [ S S ,  74-76]. The evolution of the coherences 
involve 1(21+ 1) generalized transverse rates, all of which are not necessarily distinct. 
Under the condition (ii), the homogeneous linewidths in the q-quantum spectra are 
determined by 2,2,6, and 10 distinct transverse rates for I= 1,3/2,5/2, and 7/2, 
respectively [ S S ,  75,76,80,86]. 

The homogeneous linewidths (or transverse relaxation rates) of satellite peaks, i.e. 
spectral lines that exhibit a first order quadrupolar frequency shift, are adiabatic and 
can be expressed as linear combinations of the three LFSDs. The homogeneous 
linewidths of central peaks, i.e. spectral lines that are not quadrupole shifted to first 
order, are linear combinations of the two non-adiabatic LFSDs. The longitudinal 
relaxation rates are also non-adiabatic, but depend non-linearly on the LFSDs except 
in the special cases I = 1 and I = 312. 

The number of distinct spin relaxation rates that can be determined from 
longitudinal relaxation experiments and homogeneous linewidths are summarized in 
table 1.  (The explicit linear combinations of LFSDs can be found in [ S S ,  7476 ,871  for 
I =  1 and in [77-80,861 for half-integral I.) Some additional relaxation observables of 
lesser importance are mentioned in § 2.4. A complete set of relaxation observables, 
required to determine the three LFSDs, usually consists of three linearly independent 
relaxation rates chosen from table 1. The LFSDs may evidently be over-determined; 
either by measuring more than three linearly independent relaxation rates or by 
measuring the same linear combination in different types of relaxation experiment. 
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232 B. Halle et al. 

Table 1. The number of distinct spin relaxation rates for quadrupolar nuclei in anisotropic 
fluids. 

Relaxation rate I = 1 I = 312 I = 512 I = 712 

Longitudinal 2 3 5 7 

Transverset 2 2 6 10 
Adiabatic 1 1 3 6 
Non-adiabatic 1 1 3 4 

?From homogeneous linewidths only. 

Such redundancy can be used to check systematic errors caused by instrumental 
limitations, mesophase alignment imperfections, or contributions from secondary 
(non-quadrupolar) relaxation mechanisms, or can be used simply to improve the 
accuracy in the determination of the three LFSDs. 

2.4. Spin relaxation experiments 
The basic objective of a complete spin relaxation study of a lyotropic liquid crystal 

is to determine the three LFSDs Jk,(kw,) with maximum accuracy and precision for a 
given measurement time. We consider here only macroscopically aligned (cf. 5 3) non- 
cubic mesophases. (Cubic phases can be studied by the methods used for isotropic 
fluids.) Powder samples of non-cubic mesophases are unsuitable for relaxation studies 
due to the complete scrambling of the relaxation anisotropy in the smeared-out (poor 
signal to noise), overlapping satellites [77]. Although the full relaxation anisotropy 
information is present in a powder spectrum, deconvolution is probably not feasible in 
general. 

The optimal choice of relaxation experiments for determining a complete set of 
relaxation observables depends on several factors, for example, the degree of 
mesophase alignment, the magnitudes of the quadrupole splitting and the LFSDs, the 
inhomogeneous broadening of the spectral lines, and the inhomogeneity in the R F  field. 
A universal recipe therefore cannot be given. In most cases, however, the optimal choice 
will include longitudinal relaxation experiments as well as echo experiments for 
measuring homogeneous linewidths. 

The classical longitudinal relaxation experiments are the inversion recovery (IR) 
and the Jeener-Broekaert (JB) experiments, which monitor the (coupled) evolution of 
odd-rank and even-rank polarizations, respectively [55 ,  7676,781.  The IR experiment 
is most useful for I = 1 and I = 3/2 nuclei, for which the recovery function can be 
calculated analytically. For I = 1 the single-exponential recovery yields j ,  + 4j,. (In this 
section we use the short-hand notation j ,  = Jik(kw,).) For I = 3/2 the central line and 
satellites recover bi-exponentially in general, with the relative weights of the 
exponentials determined by the detection pulse(s). For a 7t/2 detection pulse angle, the 
satellites recover exponentially with a rate constant proportional to j,. For I =  1 and 
I = 3/2 nuclei, the single exponential decay of the quadrupole polarization in the JB 
experiment yields j ,  and j ,  +j,, respectively. For I = 5/2, a modified JB experiment has 
been devised that yields a difference-double-exponential satellite decay (due to the 
coupled evolution of the quadrupole and hexadecapole polarizations) with rate 
constants depending non-linearly on j ,  and j,. 

Measurements of the homogeneous linewidths associated with the various 
q-quantum Zeeman transitions usually require echo (refocusing) experiments to 
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Invited Lecture: Lyotropic and nuclear spin relaxation 233 

eliminate static line broadening due to spatial inhomogeneities in the (static) 
quadrupole coupling (usually due to imperfect mesophase alignment) and in the 
magnetic field. A variety of echo experiments has been devised for measuring 
homogeneous single-quantum and multiple-quantum linewidths [68,76,77,79-81,88, 
891. While for I = 1 nuclei either 1D or 2D experiments can be performed, for I 2  3/2 
nuclei 2D experiments are indispensable. The non-adiabatic central linewidths 
(associated with the -4/2*q/2 transitions) are obtained from 2D spin echo (SE) 
experiments, while the adiabatic satellite linewidths are obtained from 2D quadrupolar 
echo (QE) experiments. (For a-deuteriated surfactants, the static ,H-'H dipole 
coupling to the strongly coupled proton spins further down the chain and the 2H- 
,H dipole coupling within the CD, group may give rise to complications [90].) By 
using appropriate phase cycles to filter out unwanted coherence pathways, 2D echo 
experiments can also be performed with semi-selective (or selective [9l, 921) RF pulses, 
allowing systems with large (> 100 kHz) quadrupole splittings to be studied [80,8l]. 

Some general guidelines for the choice of spin relaxation experiments can be given. 
For I = 1 nuclei the three LFSDs can be determined by performing the IR ( j ,  + 4j2), JB 
( j,), and 2D QE experiments (3 j, + 3 j ,  + 2 j,), while the 2D SE experiment ( j ,  + 2 j,) on 
the double-quantum coherence can provide useful redundancy. For I = 3/2 nuclei, with 
(essentially) non-selective R F  pulses available, the single-quantum 2D SE ( j ,  + j,) and 
2D QE ( j ,  + j, + j,) experiments can be combined with IR (j,) and JB ( j ,  + j 2 )  
experiments on the satellites. If the satellites are too broad to give acceptable signal to 
noise, the intense central line can be utilized instead in IR experiments ( j ,  and j,) with 
short detection pulses and in a double-quantum 2D QE experiment ( j ,  + j, +j2 ) .  For 
I > 312 nuclei the homogeneous single-quantum linewidths, obtained from 2D echo 
experiments, are in principle sufficient to determine the three LFSDs. In practice, 
however, some multiple-quantum linewidths are also needed to obtain good accuracy. 
Multiple-quantum linewidths are also useful in general to assess contributions from 
possible secondary relaxation mechanisms. Finally, we note that Monte Carlo 
simulations can be useful for optimizing the choice of relaxation experiments and the 
fitting procedures used to analyse the raw data. 

While the experiments discussed above are the most widely applicable ones for 
lyotropic liquid crystals, other, more specialized, relaxation experiments can some- 
times be useful. Among these are the multiple echo experiments, so far used only with 
I = 1 nuclei [76,93-971. Such experiments can be used either to identify slow motions 
or to suppress their contribution to the adiabatic linewidths. Furthermore, in the case 
of a small quadrupole splitting, new relaxation pathways (connected with the off- 
diagonal elements in the coherence blocks of the relaxation matrix in the Zeeman basis) 
can be explored, giving access to new linear combinations of the three LFSDs. 
Relaxation experiments such as these, that use long RF pulse trains, are susceptible to 
cumulative errors due to pulse imperfections. 

Another type of relaxation experiment that may be useful for studying lyotropic 
liquid crystals in the field cycling technique [98,99], which allows determination of the 
non-adiabatic LFSDs over a wide range of frequencies, extending far below the MHz 
range normally accessible with conventional NMR spectrometers. Unfortunately, this 
technique is not easily applicable to the rapidly relaxing quadrupolar nuclei of interest 
in lyotropic liquid crystals. Field cycling studies of liquid crystals have therefore been 
essentially confined to proton relaxation [48,60] (see, however, [loo]). 

A less well-known relaxation observable is the second order dynamic quadrupolar 
shift associated with the various q-quantum transitions [86,101-1031. The dynamic 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



234 B. Halle et al. 

shifts, related to the sine transform of the TCF in equation (2.1), provide new 
information but are usually smaller than the linewidths and hence difficult to measure 
accurately. 

3. Relaxation anisotropy and mesophase symmetry 
For a system as complex as a lyotropic liquid crystal, the LFSDs Jkk(ko,)  obtained 

from the spin relaxation experiments are usually not amenable to direct physical 
interpretation. Information about the microstructure and dynamics of the mesophase 
can then be obtained only at the cost of invoking model assumptions. For isotropic 
fluids, this is the only open road, but it is a treacherous one as attested by the literature 
on spin relaxation in complex fluids. For oriented liquid crystals, there is a safer road 
that avoids much of the model dependence in the interpretation: to measure the 
relaxation anisotropy, i.e. the dependence of the spin relaxation rates and LFSDs on 
the orientation of the liquid crystal with respect to the static magnetic field. 

3.1. Macroscopic orientation of lyotropic liquid crystals 
In NMR studies of liquid crystals the static magnetic field plays a dual role by 

interacting with the spin system as well as with the molecular system. The Zeeman 
interaction with the nuclear magnetic moments polarizes the spin system, while the 
interaction with the molecular anisotropic diamagnetic susceptibility tensor produces 
a macroscopic torque on the mesophase. For a uniaxial phase, the magnetic torque T is 
given by 

T = t ~ (xi - x:) sin (2tlLc), 

where t is a unit vector orthogonal to the magnetic field B, and to the mesophase 
director n. and xy are the longitudinal and transverse principal components of the 
diamagnetic susceptibility tensor and 8,, is the angle between B, and n. It follows from 
equation (3.1) that for mesophases with positive susceptibility anisotropy (xi > xy) the 
magnetic torque tends to align the uniaxial phase with the field. If the susceptibility 
anisotropy is negative (xi < xy) the torque tends to orient the phase perpendicular to 
the field. 

For a lyotropic nematic phase in the B, field of a conventional NMR spectrometer 
the magnetic torque establishes a virtually complete macroscopic orientation on a time 
scale of minutes [9]. For most non-nematic lyotropic mesophases, however, the high 
viscosity makes magnetic mesophase orientation impractically slow. On the other 
hand, this means that if such a mesophase can somehow be oriented, its original 
orientation will be effectively frozen in on the time scale of a spin relaxation experiment, 
thus allowing studies of relaxation anisotropy. To study the relaxation in a nematic 
mesophase at other orientations than that dictated by the instantaneous magnetic field 
direction, more elaborate procedures must be adopted, for example, fast [104,105] or 
slow [10&107] sample rotation or alignment by an alternating electric field [lo81 
(which interacts with the anisotropic electric polarizability and/or conductivity [ 1091 
of the lytropic mesophase) or by magnetic and AC electric fields [l09,1 lo]. 

Several techniques are available for producing quasi-permanent macroscopic 
orientation of highly viscous (non-nematic) mesophases. The simplest alternative, 
when the phase behaviour permits, is to magnetically align the sample at a temperature 
where it is sufficiently fluid, for example, in a nematic phase [69,111-1141 or in a two- 
phase region with small micro-crystallites in equilibrium with an isotropk solution 
phase [68,115,116]. As the sample is slowly brought into the desired (viscous) 

(3.1) B: 
2PO 
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mesophase by changing the temperature, it usually retains its macroscopic orientation. 
Another possibility might be to reduce the effective mesophase viscosity by ultra- 
sonication. 

Smectic mesophases can also be aligned between closely spaced parallel glass plates 
[ 1 171. This technique does not normally produce a homeotropic orientation of 
hexagonal mesophases, which tend to acquire a 2D isotropic orientational distribution 
in the plane of the glass surface [ l l l ,  1161. The major drawbacks of the glass plate 
method are the signal to noise reduction (the sample consists mainly of glass) and the 
contamination risk. (The dry deposition technique commonly used with phospholipids 
[54,llS] is unsuitable for lyotropic mesophases, whose composition must be 
accurately known.) These problems can be somewhat alleviated by increasing the plate 
spacing (to c. 0-2 mm). In this way good homeotropic alignment has been achieved with 
a dilute lamellar phase cooled from an isotropic microemulsion phase [119], and with a 
lamellar phase cooled from a magneto-aligned nematic N, phase [71]. 

3.2. Crystal-jirame spectral densities 
The intrinsic properties, such as microstructure and dynamics, of a macroscopically 

oriented liquid crystal do not depend significantly on its orientation with respect to the 
magnetic field. It must therefore be possible to reduce the LFSDs Jik(ko,) ,  which 
depend on this orientation, to more fundamental quantities that only depend on the 
intrinsic properties of the mesophase. This reduction is accomplished by transforming 
the EFG components in equation (2.1) from the lab frame (L) to the crystal frame (C), 

where DZn(RLC) is an element of the second-rank Wigner rotation matrix and 
a,=( -, O,,, (Pc )  are the Euler angles specifying the coordinate frame rotation [120]. 
(The first Euler angle is irrelevant within the secular approximation, where LFDS with 
k # k vanish.) 

Combination of equations (2.1), (2.2), and (2.3) yields 

The crystal-frame spectral densities (CFSDs) J&(ko,), defined by equations (2.1) and 
(2.2) with obvious modifications, depend only on the intrinsic properties of the 
mesophase. (A qualification of this statement is made in 56.3.) 

3.3. Mesophase symmetry and irreducible spectral densities 
According to equation (3.3), each of the three LFSDs can be expressed as a linear 

combination of 15 CFSDs (when time reversal symmetry has been exploited). 
Depending on the point group symmetry of the mesophase, some of these 15 CFSDs 
may vanish while others may be linearly dependent. Group theoretical methods can be 
used to establish the number of independent CFSDs and their form [121-1241. The 
approach is analogous to that used in molecular quantum chemistry: we construct 
symmetry-adapted functions that transform as components of irreducible represent- 
ations of the point group. The EFG components Vk in equation (2.1) are spherical 
tensor components; like the second-rank spherical harmonics they transform as the five 
components of the irreducible representation D2 of the full rotation group. The tensor 
components vk are thus adapted to the symmetry of isotropic fluids. For liquid crystals, 
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however, the CFSDs should be constructed from EFG tensor components adapted to 
the symmetry of the mesophase. Accordingly, we replace equation (3.3) by 

Ji?k(koO; OLC, $ c )  = &(OLc, 4 c )  J : ( k o , ) ,  (3.4) 
1 

where we have introduced a composite index ,I =(a, p, p’) for the irreducible represent- 
ations a of the point group of the mesophase and the independent sub-spaces p of ct (if a 
occurs more than once in the decomposition of the reducible representation D2). 

The spectral densities J E ( k o , )  are the fundamental quantities in relaxation studies 
of anisotropic fluids; we refer to them as irreducible CFSDs (ICFSDs). For a proper 
choice of symmetry-adapted functions, the ICFSDs are real-valued quantities. Since 
the symmetry-adapted functions are related to the spherical components vk by a 
unitary transformation, it follows that the ICFSDs are linear combinations of the 
CFSDs appearing in equation (3.3). The number, M ,  of distinct ICFSD functions is 
given in table 2 for several point groups of relevance for lyotropic liquid crystals [124]. 
Note that M equals the number of LFSD functions only in the case of lamellar, 
hexagonal, and uniaxial nematic phases. Only in these cases can the ICFSDs be 
identified with the LFSDs for parallel alignment [76,125]. The complete information 
content of a spin relaxation study (at a given magnetic field strength) of a liquid crystal 
thus consists of 3M ICFSDs. To determine these we need to measure three linearly 
independent spin relaxation rates at J1’ different orientations of the liquid crystal. (To 
improve the accuracy, more than M orientations can, of course, be investigated.) It is 
important to realize that the ICFSDs constitute entirely model-independent inform- 
ation; the form of the angular functions F k l ( O L C ,  &) in equation (3.4) is fully determined 
by the point group symmetry of the mesophase. 

3.4. Symmetry and tensor rank 
While the rotational symmetry of a liquid crystal is determined by its point group, 

the observable manifestations of this symmetry depend on the tensor rank of the 
observed physical property. Thus, for example, an observable of rank k cannot 
distinguish among cyclic or dihedral point groups of higher than k-fold rotation 
symmetry. Furthermore, even-rank observables are unaffected by inversion symmetry. 

Table 2. Number, N ,  of irreducible crystal-frame spectral density functions in mesophases of 
various point group symmetries [124]. 

Mesophase Translational order Point group A’” 

Isotropic fluid 
Uniaxial nematic 
Biaxial nematic 

Cubic 
Rhombohedra1 
Tetragonal 
Orthorhombic 

Hexagonal 
Rectangular 
Oblique 

Lamellar 

3D 
3D 
3D 
3D 

2D 
2D 
2D 

1D 

1 
3 
6 

2 
4 
4 
6 

3 
6 
9 

3 
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When a low-rank property is observed, a liquid crystal may thus appear to have a 
higher symmetry than prescribed by its point group. A few examples will make this 
clear. 

The spectral lineshape from a liquid crystal powder is determined by the second- 
rank average EFG tensor and hence cannot distinguish between isotropic fluids and 
cubic mesophases (which both yield isotropic lineshapes), or between lamellar, 
hexagonal, tetragonal, rhombohedral, and uniaxial nematic mesophases (which all yield 
uniaxial lineshapes), or between oblique, rectangular, orthorhombic, and biaxial 
nematic mesophases (which all yield biaxial lineshapes). The situation is analogous to 
the classification of the (second-rank) moment of inertia tensor of a molecule as a 
spherical, symmetric, or asymmetric top. 

The spin relaxation rates (and the associated spectral densities) are fourth-rank 
observables since they are of second order in the quadrupole coupling and thus involve 
products of two components of a second-rank tensor (cf. equation (2.1)). As in the 
coupling of angular momenta, this product can be decomposed into tensor compo- 
nents of ranks from zero to four [120]. As a consequence, the spin relaxation behaviour 
(its orientational dependence and the number of ICFSDs) is not the same in cubic 
mesophases as in isotropic fluids. Lamellar, hexagonal, and uniaxial nematic 
mesophases all have uniaxial relaxation behaviour, but differ from tetragonal and 
rhombohedral mesophases (cf. table 2). It is evident from these remarks that the terms 
isotropic, uniaxial, and biaxial must be used with care when discussing high-rank 
observables such as spin relaxation rates. 

3.5. Uniaxial relaxation behaviour 
Due to the ubiquity of lamellar, hexagonal, and uniaxial nematic mesophases, the 

case of uniaxial relaxation behaviour is of particular importance. Since the spherical 
tensor components V, transform according to the irreducible representations A, (k = 0), 
E, ( k =  + l), and E,(k= +2) of the point groups gmh and 6mm, they are already 
adapted to the symmetry of these mesophases. Consequently, equation (3.4) reduces to 
equation (3.3). Furthermore, according to the Wigner-Eckart theorem, all off-diagonal 
terms in equation (3.3) vanish so that 

2 

Jk(kw0; d ~ ) =  C (1 -an0/2){ Cd,k(8d12 + Cd:-n(e,~)l’}J,C,(kw~). (3.5) 
n=O 

As expected, the dependence on the azimuthal angle & has disappeared. In this case, a 
spin relaxation study can yield the nine model-independent quantities J:n(kwo), with 
k,n=0,1 ,2 .  

4. Connection to microstructure and dynamics 
4.1. Levels of structural organization 

The irreducible crystal-frame spectral density functions and the corresponding time 
correlation functions reflect the thermal fluctuations of the instantaneous EFG tensor 
at the nuclear site. In a lyotropic mesophase these fluctuations occur on several length 
and time scales, corresponding to the different levels of structural organization in the 
mesophase (cf. 91). In most mesophases, fluctuations on three levels must be considered. 
At the local level there are fast (< 0.1 ns) fluctuations of the instantaneous EFG relative 
to the local interface. At the microstructural level the orientation of the local interface 
experienced by the nucleus fluctuates through diffusive processes on intermediate 
length (1-5nm) and time (1-10ns) scales. At the long wavelength level the entire 
microstructure fluctuates on still larger length and time scales. 
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4.2. Time scale decomposition of spectral densities 
Although the overall EFG fluctuations in a lyotropic mesophase are quite complex, 

involving a wide spectrum of dynamic processes, their gross features can be described in 
a simple and essentially model-independent way. This is possible because the presence 
of distinct levels of structural organization implies that fluctuations at different levels 
occur on distinct time scales and, hence, are statistically uncorrelated. The overall 
thermal randomization of the EFG can then be seen as a stepwise projection process, 
where the instantaneous EFG components are projected on to the macroscopic liquid 
crystal axes via intermediate coordinate frames associated with the local interface and 
the microstructural elements. Because of their statistical independence, each of these 
projection steps contributes an independent term to the ICFSDs, 

JXko,) = J:""(ko,) + J yykw,) + J:"(kw,). (4.1) 

The symmetry classification of the individual terms in equation (4.1) is based on the 
point group symmetry of the macroscopic liquid crystal. Since this symmetry 
determines the orientation dependence of the LFSDs (cf. 5 3), the quantities in 
equation (4.1) are the experimentally accessible ones. (We assume here that the spin- 
bearing molecule samples the symmetry of the mesophase on the time scale of spin 
relaxation.) In certain mesophases, however, the symmetry of the microstructural 
elements is lower than that of the mesophase. This is the case, for example, for biaxial 
aggregates in a uniaxial nematic phase [126], for locally biaxial cylinders in a 
hexagonal phase [19,22], and for uniaxial aggregates in a micellar cubic phase 
[127,128]. In such cases, a group-theoretical analysis based on the point group of the 
aggregate (or microstructure) should be performed to identify the irreducible 
aggregate-frame spectral densities Jy(kw,) [ 1241. The irreducible crystal-frame 
spectral densities Jy(kw,) in equation (4.1) can then be expressed as linear combin- 
ations of the Jy(kw,). The coefficients in these linear combinations depend on the 
orientational order parameters for the aggregates with respect to the liquid crystal. 

We must now ask whether the information accessible by spin relaxation experi- 
ments is sufficient to determine the individual contributions from fluctuations at the 
different levels of structural organization in a lyotropic mesophase. As shown in 5 3, 
relaxation anisotropy experiments at a fixed magnetic field yield 3Jf ICFSDs (with Jf 
given in table 2), which obviously do not determine the 9 J f  unknown quantities in 
equation (4.1). Further progress is possible only by considering the time scales of the 
fluctuations associated with the different terms in equation (4.1). 

In most cases of interest, the local motions are fast compared to the Larmor 
frequency w,, i.e. they are in the so-called extreme limit, and thus contribute equally to 
the adiabatic and non-adiabatic spectral densities, 

J:""(ko,) = J:""(O). (4.2) 
At the magnetic field of a conventional NMR spectrometer, the long wavelength 
motions are usually slow compared to oo and thus contribute only to the adiabatic 
spectral densities (cf. 0 6.3), 

J:"(kw,) = 6,,J:"(o). (4.3) 

If the local fluctuations are sufficiently weakly anisotropic, the dependence on the 
projection index 1 is weak and we may write 

J:""(O) = J ' O C ( 0 ) .  (4.4) 
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This approximation has been directly verified for Na' counterions in a hexagonal 
mesophase [70], and is probably justified also for a-deuteriated single chain 
surfactants. (In the latter case, the first term in equation (4.1) is usually much smaller 
than the second term, and therefore contributes little to the observed relaxation 
anistropy even if equation (4.4) is not strictly valid.) 

4.3. Model-independent analysis of spectral densities 
After introducing the simplifications of equations (4.2H4.4) into equation (4. l), we 

obtain for the non-adiabatic (k  = 1,2) ICFSDs 

J(#CO,) = J ' O C ( O )  + Jr(kw,) .  (4.5) 
There are now only 2.N + 1 unknown quantities to be determined from the 2.N non- 
adiabatic ICFSDs. There are basically two ways to proceed. One possibility is to 
introduce a specific microstructural and dynamic model, which, if sufficiently simple, 
allows the 2 M  spectral densities J r ( k w , )  to be expressed in terms of a smaller number 
of model parameters. An alternative strategy, which is useful if we want to defer 
introducing a specific microstructural model, is to assume that the spectral densities are 
lorentzian (i.e. that the corresponding TCFs decay exponentially), 

Exact treatments of various specific models show that the lorentzian approximation is 
sufficiently accurate in many cases [69,71,129-1341. 

By means of equation (4.6), the two quantities Jr(o,) and J320,) can be 
transformed into two new quantities: the fluctuation amplitude A,, which is nothing 
but the initial-value GT(0) of the TCF, and the effective correlation time zl. This 
transformation has two advantages. First, it separates the spectral density information 
into a dynamic quantity z A  and a static quantity A,. The latter is entirely independent of 
the dynamics and can be calculated with relatively little effort even for quite complex 
microstructures. Second, the .N fluctuation amplitudes A ,  are, apart from a common 
factor of proportionality, expressible in terms of .N - 1 model-independent geo- 
metrical parameters [124], which are directly related to the microstructure. The 
common factor is of the form f z ,  where j is the residual quadrupole coupling constant 
(averaged by local motions). These quantities provide the link between the spin 
relaxation data (the ICFSDs) and the quadrupole splitting (cf. Q2), thus giving us a 
closed algebraic system of 2.N + 1 experimentally accessible quantities (the 2.N non- 
adiabatic ICFSDs J;(kw,) and the quadrupole splitting) and 2 M +  1 unknowns (the 
local motion contribution JloC(O), the residual quadrupole coupling constant j ,  the M 
correlation times tl, and the M - 1 geometrical parameters). After solving this system, 
the .N long wavelength contributions Ji"(0) can be obtained by difference (using 
equation (4.6)) from the M adiabatic ICFSDs Jy(0). This essentially model- 
independent interpretational strategy is illustrated in section 7.1 for the case of a 
lamellar mesophase with intrinsic microstructural defects. 

If the local interface normal is at least a threefold axis, the .N- 1 geometrical 
parameters can be chosen as the irreducible orientational order parameters of rank d 4 
[ 1351 for the microstructure. If the local symmetry is lower, the geometrical parameters 
are linear combinations of microstructural order parameters weighted by local 
(molecular) order parameters [ 1241. In either case, the geometrical parameters are 
invariant under isometric scaling of the microstructure. The absolute dimensions of the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



240 B. Halle et al. 

microstructure can, however, be obtained from the correlation times zl, which are 
proportional to a2/D,, where a is a characteristic length scale in the microstructure and 
D, is the surface diffusion coefficient. 

4.4. Relaxation dispersion 
So far we have only considered data derived from spin relaxation studies at a single 

magnetic field strength B,. Field-variable relaxation studies provide information about 
the relaxation dispersion, i.e. the dependence of the spectral densities on the Larmor 
frequency 0, = yB,. Whereas the relaxation anisotropy allows symmetry selection, i.e. 
separation of different relaxation contributions on the basis of the rotational symmetry 
of the dynamic processes, the relaxation dispersion allows frequency selection, i.e. 
separation of different relaxation contributions on the basis of the time scale of the 
dynamic processes. Even a fixed field relaxation study affords some frequency selection, 
of course, since it probes the spectral density functions at three frequencies (0, w,, and 
20,). Field-variable relaxation studies can give a more complete characterization of the 
spectral density functions. In contrast to the relaxation anisotropy, however, the 
relaxation dispersion cannot be analysed without recourse to a dynamic model. The 
ultimate spin relaxation study, comprising relaxation anistropy as well as relaxation 
dispersion and yielding the frequency dependence of the Jf individual ICFSDs, has, to 
our knowledge, not been conducted on any anisotropic fluid system. As regards 
lyotropic liquid crystals, relaxation dispersion measurements are particularly valuable 
for studies of nematic phases, which do not allow conventional relaxation anisotropy 
measurements (cf. Q 3.1). Whereas conventional NMR spectrometers equipped with 
field-variable magnets allow Larmor frequency variations over a decade or so, several 
decades can be covered by field cycling techniques. Although subject to other 
limitations (cf. Q 2.4), field cycling dispersion experiments on macroscopically oriented 
mesophases can give a more complete picture of long wavelength fluctuations (cf. Q 6), 
such as director fluctuations [48]. 

5. Diffusion on curved surfaces 
The information about the microstructure of a lyotropic mesophase is essentially 

contained in the contributions Jy(ko,) to the ICFSDs in equation (4.1). These spectral 
densities can involve two kinds of dynamic process: (i) translational diffusion of the 
spin-bearing molecule with respect to the interface, and (ii) reorientational motion of 
the interface. The latter process is important only in mesophases built from small 
surfactant aggregates, such as (most) nematic and (some) cubic mesophases. Usually 
the aggregates exhibit a high degree of orientational order, in which case approximate 
analytical solutions to the restricted rotational diffusion model can be used [129-1321. 

For spin-bearing species that are strongly accumulated at or near the interface, such 
as surfactant molecules and counterions (in the absence of added electrolyte), the 
diffusion space is effectively reduced to two dimensions, i.e. the translational motion of 
these species can be treated as a surface diffusion process. If the interface is curved, 
surface diffusion induces fluctuations in the orientation of the residual (averaged by 
local motions) EFG tensor, whose symmetry axis usually coincides with the local 
interface normal. This is the principal mechanism for conveying information about 
mesophase microstructure to the spin system. For counterions, longitudinal diffusion 
(along the interface normal) also occurs to some extent. Except in the trivial case of a 
planar interface, longitudinal and transverse (surface) diffusion are non-separable. 
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However, detailed studies of the 3 D  ion diffusion problem in various geometries [ 1 3 6  
1381, shows that the effect of longitudinal diffusion is usually insignificant [68,69,71] 
(cf. #7.1 and 7.2). 

The spectral densities Jid(koo) can be calculated for diffusion on any well-defined 
surface of prescribed geometry. (The case of fluctuating surfaces is discussed in section 
6.) The associated TCF can be expressed in terms of the curvilinear surface coordinates 
(u,u) as [133] 

Gd(4 = duo duo CS(Uo9 ~ o ) l ' ~ z f q ( ~ o ~  00) CV(u0,uo) - < K>l* s s  
x s d u  sdu[g(u,  o)]'i2f[(u, u, duo, uo)[vA(u, 0)- <vA>l, (5.1) 

where is a symmetry-adapted residual EFG component in a surface-fixed frame, 
g(u, u) is the determinant of the metric tensor, fes(u, v )  is the equilibrium surface 
distribution of the spin-bearing species, and the propagatorf(u, u, tlu0, uo) satisfies the 
generalized surface diffusion equation [ 1391 

a 
- f(u, v,4uo, 00) = vs Ds(u, 0) * Cfeq(% u)Vsf(u, 0, duo, U 0 ) / f e q ( ~ ,  011, 
a T  

f (u,  u, Oluo, uo) = 6(u - u,)6(0 - uo)/Cg(uo, u0)l liZ. 

(5.2) 

and the initial condition 

(5.3) 
Rather than pursuing the general case, we shall consider the surface diffusion 

problem under certain simplifying assumptions, which are justified in most cases of 
interest. The spin-bearing species is taken to be uniformly distributed over the surface 
(of area As), i.e. 

and its diffusion tensor is taken to be uniform and isotropic in the surface, i.e. 

D,(u, u)  = DsI. (5.5) 

Furthermore, we restrict attention to centrosymmetric surfaces of revolution (point 
group gab) with approximately threefold site symmetry, whence 

(5.6) 
where 8 and 4 are the spherical polar angles for the orientation of the local surface 
normal, and Ts is the principal residual EFG component in a local frame. Vs is 
proportional to the residual quadrupole coupling constant f and is taken to be uniform 
over the interface. 

V h ,  0) - < VA) = Vs[d io (4  exp (- W )  - 6,,,o<d~o>l, 

After these simplifications, equation (5.1) can be expressed as [133] 

GsP,(4 = - d?oh(?o)eo (~o)  d?h(?)f,(?, d?o)eo(Q (5.7) Vi ci s s 
where q is a dimensionless surface coordinate orthogonal to 4, h(q) = [g(q, 4)] ' / ' /a2 is a 
dimensionless metric factor, a=A,/a2 is the reduced surface area, a is a length 
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characteristic of the surface, and dio(0) = dio(0)- &,o(dzo), with O = O(v). The modified 
propagator f,(q, zlqo) satisfies 

(5.8) 

where 9, is the self-adjoint second order differential operator 

with V,Z being the ?-part of the surface laplacian. 
To calculate the spectral density functions 

(5.10) 

we have to solve the partial differential equation (5.8), perform the integrations in 
equation (5.7), and take the cosine transform in equation (5.10). It can be shown, 
however, that the same result can be obtained more easily by performing a single 
integral, 

where the quantity Q,(q, w )  satisfies the ordinary differential equation 

(5.11) 

(5.12) 

This direct approach has two important advantages [133]. First, its numerical 
implementation is highly efficient, simply involving the solution of the (complex) matrix 
equation resulting from equation (5.12) after discretizing the y~ coordinate and 
approximating derivatives by finite differences. Second, it often allows the adiabatic 
spectral densities Jit(0) to be obtained by simple quadrature, sometimes even 
analytically. A case in point is the truncated catenoid of inner radius a and height 2b 
(a plausible model for pore defects in bilayers, cf. §7.1), for which 

J;%(O) = V; ’”-[ 1 +& sinh (:)I- ’. 
16Ds 

(5.13) 

In the limit b/a+ co, the truncated catenoid degenerates into a cylinder of radius a and 
equation (5.13) reduces to 

For a prolate spheroid of minor and major semi-axes a and b, with b>>a, 

9a2 
128Ds’ 

J;d2(o )  = v;- 

(5.14) 

(5.15) 

which is 314 of the cylinder result in equation (5.14). Another simple case is the oblate 
spheroid with b >>a, for which 

(5.16) 

which is a factor 512 larger than the result for a sphere of radius a. 
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The spectral densities for diffusion on spherical and cylindrical surfaces are strictly 
lorentzian. For a sphere of radius a, 

and for a cylinder of radius a, 

(5.17) 

(5.18) 

6. Long wavelength fluctuations 
6.1. Continuum description 

When discussing the microstructure of a lyotropic liquid crystal, we usually refer to 
an ideaIized ground state configuration. Like any other condensed phase, however, a 
lyotropic mesophase is subject to thermal fluctuations and these will influence its 
microstructure. Although quadrupolar spin relaxation probes single-particle reorien- 
tational dynamics, it may be profoundly affected by collective fluctuations in fluids 
where the orientational correlation length substantially exceeds molecular dimensions. 
If this correlation length is effectively infinite, as in liquid crystals, collective fluctuation 
modes on a wide ran& of length scales may affect the spin relaxation. 

Collective fluctuations in liquid crystals are usually analysed within the framework 
of continuum mechanics (elasticity theory and hydrodynamics). The equilibrium 
description then involves certain macroscopic material constants, components of the 
fourth-rank elastic modulus tensor, that determine the free energy of isothermal 
deformation of the liquid crystal [140]. The material constants of uniaxial liquid 
crystals are the splay, twist, and bend elastic moduli K,, K,, and K,, the bulk modulus 
(osmotic compressibility) B, and the shear modulus p. In addition, the hydrodynamic 
description involves a number of viscosity coefficients [141] (5  for a uniaxial 
mesophase). 

The continuum description of a lyotropic liquid crystal is valid only on length scales 
that are large compared to the dimensions of its microstructure. Spin relaxation, 
however, probes the liquid crystal at a molecular level. We therefore face the problem of 
accounting, in a self-consistent manner, for the spin relaxation contributions from 
molecular processes, described by microscopic models, and for contributions from 
collective processes, described by continuum theory. This is a fundamental statistical- 
mechanical problem that appears in many guises throughout condensed matter 
physics. Our problem is thus to divide the fluctuation spectrum between the two 
ICFSD terms Jy(kw,) and J',"(kw,) in equation (4.4) in such a way that J Y ( k o , )  
accounts for short wavelength fluctuations, describable in terms of the (ground state) 
microstructure, while J:"(kw,) accounts for long wavelength fluctuations, describable 
in terms of the macroscopic (zero wavenumber) material constants of the mesophase. 
The conventional solution to this problem is to introduce a short wavelength cut off 
[25], above which the continuum description is taken to be valid, and to hope that the 
microscopic model for JY(kw,) takes care of fluctuations at shorter wavelengths. To 
avoid this somewhat artificial division into short wavelength and long wavelength 
fluctuation modes we would need an entirely microscopic description in terms of 
aggregate size and shape and interaggregate forces, which is not available at present. 

6.2. Time correlation functions 
Since the long wavelength fluctuations in lyotropic liquid crystals are generally of 

small amplitude, they contribute significantly to the spin relaxation only if they are 
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slow. At conventional magnetic fields this means, as noted in 5 4.2, that we only need to 
consider the adiabatic spectral densities Ji"(0) [72,73]. (We disregard critical 
fluctuations occurring in the vicinity of phase transitions [25,125,142-1441.) 

The qualitative features of long wavelength fluctuations in liquid crystals are 
determined by the point group symmetry of the mesophase and the dimensionality of 
the long range translational order. In the following, we restrict our attention to the 
'uniaxial' case, i.e. lamellar, hexagonal, and uniaxial nematic mesophases (cf. 5 3), with 
three distinct ICFSDs: JL:(O), n=O, 1,2. If the uniaxial symmetry of the mesophase 
persists at the local level (down to the short wavelength cut 00, the effect of long 
wavelength fluctuations on the spin relaxation can be described in terms of a unit 
vector field n(r), referred to as the local director. The local director should be 
understood in a 'coarse-grained' sense; it refers to a volume of linear dimensions 
comparable to the short wavelength cut off. The average no = (n(r)), taken over the 
liquid crystal, coincides with the macroscopic symmetry axis of the uniaxial 
mesophase. 

The adiabatic spectral densities J!,:(O) are the time integrals of the corresponding 
TCFs GL:(z), which can be expressed in terms of the local director components n +  = n, 
+i  ny as [73,145] 

(6.1 a) 

(6.1 b) 

(6.1 c) 

It is seen that G&((z) and C\W,(z) are of fourth order in the fluctuating director 
components n, and ny, whereas the leading contribution to Giy(,(z) is of second order. 

The second-rank orientational order parameter associated with long wavelength 
fluctuations in a uniaxial phase is given by [25] 

Gb"4 = : mx 1% + (011 In + (41 ) - ( In + I ) 
Giy (7 )  = $P$ ( n  + (0)n - (z)) + o(n",, 
G&(z) = gV$( n: (O)n? (7)). 

S, ,  = (Pz(n.no)) = 1 - 3(n: ) .  (6.2) 
If all fluctuation modes are fast compared to the inverse of the quadrupole coupling 
fluctuations which they induce, the quadrupole splitting is proportional to S,,. 

According to the standard continuum theory of fluctuations in uniaxial liquid 
crystals, which is restricted to small fluctuations (thus excluding critical phenomena), 
the free energy of isothermal deformation can be expressed, to second order in the local 
director components, as the Fourier expansion [25? 1401 

'" 4 
where fi,(q) and ii,(q) are the independent fluctuation eigenmodes that diagonalize the 
quadratic form in equation (6.3), and the associated potential functions 41(q) and &(q) 
contain the moduli of the mesophase. Application of the equipartition theorem to 
equation (6.3) leads directly to the mean square fluctuation amplitudes 

These can then be used to express the order parameter S, ,  and the initial TCFs Gk:(O) in 
terms of the moduli. The TCFs involve fourth order averages, which, however, are 
simply related to the second order averages since the quadratic form of the free energy 
ensures that the director components arc gaussian random variables [ 1391. Within the 
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second order fluctuation theory, the initial TCFs are simply related to the order 
parameter S1, [73], 

G&(O) = 3G\”,O) = (1 - SlW)’, (6.5 a )  

G\”,O) = 1 - Sl,. (6.5 b) 

As noted in 0 3.4, the TCFs are fourth-rank quantities, and their initial values should 
therefore, for uniaxial mesophases, involve also the fourth-rank order parameter 
Qlw = (P,(n*no)). However, the harmonic approximation underlying equation (6.3) 
implies a definite relationship between Qiw and S1,. 

In general, the director components n+(z) in equation (6.1) fluctuate in time as a 
result of two distinct dynamical processes: (i) translational diffusion of the spin-bearing 
molecule through the inhomogeneous director field, i.e. n*(z) = n +(r(z)), and 
(ii) collective fluctuations of the orientation of the local director at a given ‘point’, i.e. 
n,(z)=n+(r,z). If one of these processes is much faster, the other one has no effect. 
We now discuss the two possible limiting cases. 

6.3. Translational diflusion in a static director jield 
If translational diffusion is much faster than director fluctuations the diffusing spin 

will see an effectively static director field, and the TCFs in equation (6.1) can be 
expressed as [73] (omitting the common factor Ti) 

GfOWO(z) = d r f h  z)C(ln +(0)121n +WI2 ) - (In + I2>’l7 

GiW,(z) = 3 d r f ( r ,  z)<n + O n  -W, 

G\W,(z)=$ d r f ( r ,  z)(n?(O)n%)). 

(6.6 a )  

(6.6 b) 

s 
s 
s (6.6 c) 

Here f ( r ,  z) is the propagator for (anisotropic) translational diffusion of the spin- 
bearing species through the liquid crystal. Due to the translational invariance (on the 
‘coarse-grained scale), there is no dependence on the initial position (i.e. we can set r =O 
at z = 0). It is interesting to note that the director components n,,,(z) = n,,y(r(z)) are 
stochastic at two levels since they represent a random motion [r(z)] in a random 
medium [n,,,(r)]. The composite stochastic processes nx,y(z)  are in general non- 
markovian. 

The quantities within angular brackets in equations (6.6) are spatial correlation 
functions of the gaussian random variables n+(r). Using the gaussian property, it is 
readily shown that [73,145] 

(6.7) 

G&(T) = 3G’,”,(z). (6.8) 

(In + @ ) I 2  In +@)I ’ ) - (In + I >’ = 3(n:(o)n’ (r)), 

whence 

This result is simply a consequence of the small amplitude of the orientational 
fluctuations, implied by the quadratic form of the hamiltonian in equation (6.3). The 
relation Jb:(O) = 3J;”,O), which follows trivially from equation ( 6 4 ,  provides a useful 
check in the data analysis. 
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The two distinct TCFs may be expressed in terms of the mean square mode 
amplitudes (ln+(q)12)3 simply related to those in equation (6.4), as 

(6.9 a) 

(6.9 b) 

The longitudinal (along the mean director) and transverse (perpendicular to the mean 
director) diffusion coefficients D II and D, in equations (6.9) are the macroscopic (zero 
wave vector) quantities that are measured, for example, in a pulsed field gradient NMR 
experiment (cf. 8 1). They are thus averaged over the microstructure and may differ by 
orders of magnitude from the surface diffusion coefficient D, introduced in 9 5. 

The adiabatic spectral densities J!,:(O) are obtained from equations (6.9) after a 
trivial integration over z and a somewhat less trivial wavevector integration. To avoid 
divergences, it is generally necessary to include in the free energy in equation (6.3) the 
interaction of the static magnetic field with the anisotropic diamagnetic susceptibility 
of the mesophase. This introduces a new length scale, the magnetic coherence length, 
which acts as a long wavelength cut off. 

For a (non-polymer) nematic mesophase, neglecting the anisotropy (which should 
be relatively small in lyotropic nematics) in the diffusivity and elasticity tensors, we find 
1731 

JbF(0) = 3Jg(O) = (sy [ln (lie) - 1.12 + O(E)], (6.10 a) 

(6.10b) 

with e=2,/(2ntm), where 1, is the short wavelength cut off and t, is the magnetic 
coherence length [25,73], 

(6.1 1) 

where xi and ~7 are diamagnetic susceptibility components in the liquid crystal frame. 
For lyotropic nematics in conventional magnetic fields, g, is of the order 

It was stated in 83.2 that the intrinsic properties of a liquid crystal do not depend 
significantly on its orientation with respect to the magnetic field. This is not quite true 
since, according to equation (6.1 l), the magnetic coherence length t,, which sets the 
range for spatial correlations of the fluctuating local director components nJr) [25], 
depends on the crystal orientation OLc. This leads to a significant O,, dependence in 
Jiy(O) ,  which causes a departure from the orientation dependence of the adiabatic 
LFSD predicted by equation (3.5). 

The results in equation (6.10) should be generally valid for counterion nuclei in 
lyotropic nematics, since the counterion diffusion coefficient D is typically two orders of 
magnitude larger than the director fluctuation diffusion coefficient K / q  so that the 
director field can be treated as static. A welcome feature of the result in equation 
(6.10 a) is the very weak dependence of J ~ ~ ( 0 )  on the imprecisely defined short wave 
length cut off I, .  Given an independent determination (or estimate) of D, spin relaxation 

m. 
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data can thus be used to determine the effective elasticity modulus K .  The spectral 
density JiY(0) cannot be measured for nematic mesophases without special alignment 
techniques (cf. 0 3.1). On the basis of equation (6.10) and a typical K = 1 pN, we expect 
JiY((0) to be at least 5 orders of magnitude larger than JbF(O), calling into question the 
validity of the motional narrowing approximation in the conventional spin relaxation 
theory [82]. In contrast, the non-adiabatic spectral density J::(O), which could easily 
be measured, does not contribute significantly to the spin relaxation in lyotropic 
nematics at conventional magnetic fields [73]. Under these conditions [73,146] 

(6.12) 

Even if J:",(w,,) did make a significant contribution, it would not be of much value due 
to the strong 1, dependence. 

Whereas the surface diffusion coefficient D, is often of comparable magnitude for 
counterions and (single chain) surfactants [69], the bulk diffusion coefficient D in 
nematic phases may be several orders of magnitude smaller for surfactants than for 
counterions. Since the surfactant has to jump from one aggregate to another, its 
macroscopic diffusion coefficient is determined by its mean residence time in an 
aggregate (c. lop5 s for a CIz  chain). Consequently, the static director limit is not 
applicable to surfactants in nematic phases. In a lamellar phase, this limit may be 
applicable for counterions as well as for surfactants in the transverse plane, but not in 
the longitudinal direction (unless the lamellae have perforation defects). In a hexagonal 
phase the situation is reversed with relatively fast diffusion in the longitudinal direction, 
but with slow diffusion in the transverse plane. In these translationally ordered phases 
spin relaxation studies might provide valuable information about surface forces via the 
dependence of JiY(0) on the osmotic compressibility [ 147-1491. 

6.4. Immobile spin subject to director fluctuations 
When the static director limit is not applicable, the hydrodynamics of director 

fluctuations must be considered [25]. In the case of nematic phases (neglecting 
anisotropies), the result [125,150,151] is simple for the second order TCF G{",(z) and 
its associated spectral density: we simply replace D in the result for a static director field 
with D + K/q. For the fourth order TCFs Gb\(,(z) and G\;(T), the basic problem is that 
they cannot be obtained from a second order theory. (In the static director limit, this 
problem does not arise since the static director component distribution is gaussian.) We 
are then forced to make the additional assumption that the different wavevector 
components of the director field behave as independent gaussian Markov processes 
[145,152]. Proceeding in this way, we find for a nematic phase (neglecting aniso- 
tropies), in the immobile spin limit (D<< K / q )  [73], 

(6.13) 

It should be noted that this result is not obtained from equation (6.10 a)  by replacing D 
with Klq. 

7. Applications 
In the preceding sections we have presented a rather general discussion of 

quadrupolar spin relaxation in lyotropic liquid crystals. To illustrate the general 
principles, we devote this section to a more specific discussion of spin relaxation in the 
most commonly occurring mesophases. These examples, taken from our recent and 
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current work, are intended to give an appreciation of the potential and limitations of 
spin relaxation experiments for studying microstructure and dynamics in lyotropic 
liquid crystals. 

7.1. The lamellar phase 
The lamellar phase is the only lyotropic smectic mesophase with complete lateral 

disorder. Since the lamellar phase is built from planar interfaces, we expect relaxation 
contributions from local motions and long wavelength smectic undulation modes (the 
first and third terms in equation (4.1)), but not from surface diffusion. Under the 
assumptions of equations (4.2H4.4), we therefore expect that all the six non-adiabatic 
ICFSDs should be equal, 

J:n(koo) = J ' O ' ( 0 ) .  

Actually, there is also a contribution to the secular ICFSD JE,(kw,) from fluctuations 
in the magnitude of the residual EFG (averaged by local motions) due to translational 
diffusion of the spin-bearing species along the interface normal [136,137]. Since the 
residual EFG is non-zero only in the locally anisotropic interface region (of width a), it 
may be modelled as a step function. The effective correlation time is then of the order 
d2/DN, where DN is the diffusion coefficient in the normal direction. At conventional 
magnetic fields this is much smaller than the Larmor period l/m0, whence equation 
(7.1) becomes 

J:n(ko,) = J y o )  + 6,,J",d,(O), (7.2) 

J%(0)= v i f ( l - f ) [ ( l  - f ) Z A f f Z B 1 ,  (7.3) 

with an adiabatic 'normal diffusion' contribution of the form [ 1371 

where T* is the mean residence time for the fraction f of the nuclei in the anisotropic 
interface region and zB is the mean residence time for the fraction 1 -fof the nuclei in 
the remaining, essentially isotropic, bulk-like region. These residence times can be 
obtained by quadrature for any spatial distribution function 11371. (Note that the 
detailed balance relation f~~ =(1- f ) ~ ~  is not valid in a continuous diffusion 
description.) 

For counterions (in the absence of added electrolyte), the full spectral density 
function J g t ( o )  can be calculated analytically [136,153]. Usually, however, we only 
need the adiabatic contribution, which under most conditions is given by [136] 

(7.4) 

This simple result is valid if the Gouy-Chapman length I,, = 2~,~,k~T/lzeal  (typically a 
few Angstrom) is much smaller than the thickness d of the aqueous layer. This 
contribution is important only for water-swollen lamellar phases (d  2 3 nm) in the 
absence of added electrolyte. 

In recent years it has become clear that the microstructure of lamellar phases 
sometimes deviates markedly from the classical picture of continuous planar surfactant 
bilayers of indefinite lateral extent [ 15-24]. The bilayers may, for example, be 
perforated by aqueous pores or slits or may even be fragmented, forming layers of 
discoidal aggregates. Since such intrinsic structural defects necessarily introduce 
curvature, they should be manifested in the spin relaxation behaviour. The spin 
relaxation method is particularly attractive here since it is a null experiment: provided 
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that equations (4.2H4.4) are valid and there is no signifcant contribution from normal 
diffusion, the two non-adiabatic LFSDs Jkl(wo) and Ji2(2w0) should be equal and 
independent of orientation for a classical lamellar phase. In the presence of defects, 
however, the non-zero contributions Jg(koo) will give rise to a relaxation anisotropy 
as well as a frequency dependence. 

We now consider the 23Na relaxation data obtained from the counterions in a 
homeotropically aligned sample of the lamellar phase in the system sodium dodecyl 
sulphate/water/decanol[71]. We know from studies of the hexagonal phase [70] that 
equations (4.2H4.4) are valid (cf. 5 7.2). Figure 1 (a)  shows the orientation dependence of 
the non-adiabatic LFSDs: the microstructure is clearly non-classical. The six non- 
adiabatic ICFSDs resulting from fits of equation (3.5) are shown in figure 1 (b). 

A model-independent analysis, based on equations (4.5) and (4.6), of the six non- 
adiabatic ICFSDs and the quadrupole splitting yields the local motion contribution 

100, 

i] n = O  80 

Figure 1. 23Na relaxation data from counterions in the lamellar phase of the system sodium 
dodecyl sulphate/water/decanol [71]. (a) Variation of the non-adiabatic lab-frame 
spectral densities with the crystal orientation, OLc (b)  Crystal-frame spectral densities 
derived, according to equation (3.9,  from the fits in (a). The dark area represents the local 
motion contribution J'oc(0). 
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JloC(O), shown in figure 1 (b), the residual quadrupole coupling constant 2, the three 
correlation times q,, zl, and z2, and two geometrical parameters which we define as 

g2 = (sin' &,), 

(r4 = ( sin4 &,), 
(7.5 a) 

(7.5 b) 

where O,, is the angle between the local interface normal and the symmetry axis of the 
phase, and the angular brackets denote an average over the distributionf(&,) of local 
interface normal orientations. Since ts2 = cr4 = 0 for a planar interface, we can write 

(Tk = PB,, (7.6) 
where Pis the fraction of counterions associated with curved interfaces (i.e. defects) and 
Bk refers to the defect. The ratio 0 ~ / 0 ~ = 6 ~ / 8 ,  thus characterizes the defect and, if the 
counterion distribution is laterally uniform within the defect, it directly reflects the 
defect geometry. The experimental result is a2/o4 = 1.48 f 0.06. 

We consider four types of bilayer defect: hemitoroidal and (truncated) catenoidal 
pores, a cylindrical slit (or ribbon), and a completely fragmented bilayer composed of 
oblate spheroids. For these defect models, the distribution function f(OcN) depends on 
a single parameter 1 = b/a, where 2b is the bilayer thickness and 2a the pore diameter, 
ribbon width, or oblate diameter. All defect models, such as cylindrical pores or 
rectangular slits, that only introduce interfaces with 8cN = 7112 can be discarded since 
they predict that J';s(o)=O, and hence cannot account for the ICFSDs J~ , (w , )  and 
J ~ , ( 2 0 , )  in figure 1 (b). 

Calculating B2/b4 as a function of I for the four defect models and comparing with 
the experimental result, we see, in figure 2, that the data are consistent with three of the 
models, but only within certain ranges of I .  By considering the individual g2 and g4 

values, the oblate model (for which P = 1) can be discarded. (This is true even if we allow 

0 1 2 3 4 5  
b/a or a/b (oblate) 

Figure 2. Ratio of geometrical parameters for various bilayer defect models (cf. text). The 
dotted lines represent the experimental result (with propagated errors), derived from the 
data in figure 1 (b). 
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5 nm - 251 

Catenoidal pore Hemitoroidal pore 

Figure 3. Top and side projections of bilayer with pore defects, as deduced from the 
corresponding b/a values in figure 2. The absolute length scale is based on the X-ray repeat 
distance. 

for orientational disorder of the aggregates and if we calculate the spectral densities 
J$(ko , )  exactly [ 1331, without invoking the lorentzian approximation equation (4.6).) 

We are thus left with the two pore models. The values of il and P ,  obtained from o2 
and 04, allow us (assuming a laterally uniform counterion distribution) to construct the 
projected views in figure 3 of the perforated bilayer. Although a large fraction of the 
total interface is curved (76 per cent and 48 per cent, respectively, for hemitoroidal and 
catenoidal pores), only a small fraction of the bilayer plane is permeable to water and 
ions (6 per cent and 12 per cent, respectively). The catenoidal pore is a minimal surface 
[154] with zero mean curvature, while the hemitoroidal pore has a positive average 
mean curvature, as in the adjacent nematic and hexagonal phases. (A more general 
ribbon model, with elliptic edges, is also consistent with the data, and appears to be 
energetically more favourable than the pore geometries [71].) 

The structures shown in figure 3 are based entirely on the geometrical parameters 
o2 and o4 and, hence, do not involve absolute dimensions. To obtain the length scales of 
the structures, we can either invoke the correlation times z,, (cf. tj 4.4) or determine the 
lamellar repeat distance by X-ray diffraction. In the present case the two approaches 
give similar, and reasonable, results: a bilayer thickness of c. 3 nm and an inner pore 
radius of c. 1 nm [71]. 

7.2. 2 0  mesophases 
Lyotropic phases whose microstructural elements are of indefinite length in one 

dimension and are periodically ordered in the other two dimensions are sometimes 
called canonic mesophases [23]. This class of liquid crystals includes the normal and 
reversed hexagonal phases of plane group p6mm and the rectangular phases, with the 
most common plane groups c2mm and p2gg. 

In the ground state microstructure of canonic mesophases (disregarding collective 
fluctuations), the local interface normal is everywhere perpendicular to the highest 
symmetry axis of the liquid crystal (@,,=a/2). This fact greatly simplifies the spin 
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relaxation behaviour, reducing the number of ICFSDs Jy(kw,) associated with the 
microstructure (cf. table 2) to one for hexagonal phases, two for rectangular, and three 
for oblique mesophases [124]. 

The aggregate shape in canonic mesophases is usually represented by a circular or 
elliptic cylinder [32] (or by a ribbon with a semi-circle capped rectangular cross-section 
[30]). In a hexagonal phase, where the cylindrical aggregates may be locally elliptic 
[ 19,223, the six non-adiabatic ICFSDs are, under the assumptions of equations 
(4.2H4.4), given by 

where JF$(w) is the cosine transform of the TCF 

J:,,(ko0) = J ' O C ( O )  + Gn2J73kwO), (7.7) 

(7.8) G?l(z) =gvi,"Csg gD(z) + ( l -  s&?D(z)gC(t)l* 
Here S, = (cos (24,)) is the order parameter characterizing the cross-sectional shape. 
For an elliptic cylinder of aspect ratio p (and eccentricity, E = (1  - p - ' )11') ,  S ,  can be 
expressed in terms of complete elliptic integrals as [32] 

(7.9) 

Equation (7.8) contains two reduced TCFs: gc(z) is associated with surface diffusion 
on the biaxial cylinder, modulating the orientation &of the local interface normal with 
respect to the aggregate, and gD(7) is associated with diffusion of the spin-bearing 
species between differently oriented cross-sections or reorientation of the (local) 
aggregate cross-section, modulating the angle 4D describing the orientation of the 
cross-section, with respect to the liquid crystal. These reduced TCFs are simply 

S D ( 4  = (cos C2(4, - 4 w  (7.10) 

(7.1 1) 

In the limit of a circular cross-section, Sc=O and equation (7.8) reduces (after Fourier 
transformation) to equation (5.18). (In this case we can set gD(z) = gD(0) = 1, since the 
rotational diffusion of the cylinder around its axis is much slower than surface 
diffusion.) 

We now consider the 23Na relaxation data obtained from the counterions in a 
homeotropically aligned sample of the hexagonal phase in the system sodium dodecyl 
sulphate/water/decanol[69,70]. Figure 4 (a) shows the orientation dependence of the 
non-adiabatic LFSDs [70], yielding, by way of equation ( 3 3 ,  the six non-adiabatic 
ICFSDs shown in figure 4(b). According to equation (7.7), four of these should be equal, 
reflecting only the local dynamics. The slight deviation from this idealized picture can 
be accounted for by the flexibility of the cylindrical aggregates (closely related to the 
bend elastic modulus of the hexagonal phase [149]). The long wavelength fluctuations 
associated with this flexibility are clearly manifest in the adiabatic ICFSDs [70]. 

Assuming that the aggregates are circular cylinders, the two ICFSDs Jyl(oo) and 
J;,(2w0) can be used to determine the residual quadrupole coupling constant and the 
correlation time tS in equation (5.18). With the cylinder radius obtained from X-ray 
diffraction data, the surface diffusion coefficient D, of the Na' counterions can thus be 
deduced. In this case we obtained [69,70] D,=(4.4+0.4) x lo-'' m2 sK1 at 25°C 
which is only a factor of three smaller than for an infinitely dilute bulk electrolyte 
solution. From the 'H relaxation of the a-deuteriated dodecyl sulphate surfactant in 
the same mesophase [69], we determined in a similar way the lateral diffusion 
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100 

n = 2  
80 

d 

I 
60 

C$ 40 

h 

3" 
c, 

20 

n " 
0 0  2 0 0  0 0  2w0 0 0  200 

(4 
Figure 4. 23Na relaxation data from counterions in the hexagonal phase of the system sodium 

dodecyl sulphate/water/decanol [70]. (a) Variation of the non-adiabatic lab-frame 
spectral densities with the crystal orientation, OLC. (b) Crystai-frame spectral densities 
derived, according to equation ( 3 . 9 ,  from the fits in (a). The dark area represents the local 
motion contribution floc(0). 

coefficient of the surfactant: Ds=(l.4_+O.2)x 10-'0m2s-', i.e. only a factor of three 
smaller than for the counterion. 

In reversed hexagonal phases the radius of the aqueous cylinders can be varied in a 
controlled way, allowing a direct verification of the a' dependence of the correlation 
time. This was done in a 23Na relaxation study of the reversed hexagonal phase in the 
system Aerosol OT/water/iso-octane, yielding Ds=(2.8 k0.3) x 10- lo mz s - '  at 206°C 
(a factor of 3.6 less than the limiting bulk value) [68]. 

As in a lamellar phase, normal diffusion (perpendicular to the cylindrical interface) 
also contributes to the ICFSDs in a hexagonal phase. Since normal and lateral 
diffusion cannot be separated in cylindrical symmetry, both Jg,(w) and J$,(w) are 
affected. To assess the validity of the surface diffusion approximation, equation (5. lX), 
the contributions to these spectral densities from counterion diffusion in the 3D space 
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Figure 5. Crystal-frame spectral density contributions from counterion diffusion in the 3D 
space outside the cylindrical aggregates in a hexagonal phase [69]. The dashed lorentzian 
dispersion curve corresponds to the surface diffusion approximation, equation (5.18). 

outside the cylinders can be calculated numerically [138], taking into account the 
electrostatic interactions (in a mean-field approximation) among the counterions and 
with the oppositely charged cylinder. The result of such a calculation, for the hexagonal 
phase discussed above [69], is shown in figure 5. The normal diffusion contribution to 
J&,(o) is seen to be negligible, while &(o) remains very nearly lorentzian. Moreover, 
the effective correlation time characterizing this lorentzian dispersion does not differ 
significantly from zs in equation (5.18). 

7.3. 3 0  mesophases 
Among the lyotropic mesophases that are periodic in three dimensions, those of 

cubic symmetry are by far the most widely occurring [10,40,157], although several 3 D  
mesophases oflower symmetry are known [ll,  155,1563. According to the topology of 
their microstructure, cubic phases are either of the micellar type, containing closed 
(usually small) surfactant aggregates, or of the bicontinuous type, with both polar and 
non-polar regions connected over macroscopic distances in three dimensions. Several 
spin relaxation studies have been reported on cubic phases of both types [42,48, 
62-67]. Micellar cubic phases are usually modelled in terms of spheroidal aggregates 
[127,128]. The analysis of spin relaxation data from such phases involves diffusion on 
the spheroidal aggregate surfaces, restricted rotational diffusion of the aggregates, and 
slower exchange processes [123,133]. In the following we focus on bicontinuous cubic 
phases. 

The microstructure of bicontinuous cubic mesophases is usually modelled in terms 
of a class of minimal surfaces that are periodic in three dimensions and free from self- 
intersections [158-1621. (A minimal surface may be defined as a surface whose mean 
curvature vanishes at every point [ 154,1631.) These triply periodic minimal surfaces 
(TPMS) are then taken to define the bisecting surfaces of the polar (aqueous) or non- 
polar (bilayer) regions in normal and reversed cubic phases, respectively. One example 
of a cubic TPMS, the so-called gyroid surface [164], is shown in figure 6. 

In a cubic phase there are two ICFSDs (cf. table 2), associated with the irreducible 
representations E and T, of the octahedral point group [123]. In general these ICFSDs 
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Figure 6. The gyroid minimal surface, with the cubic unit cell inscribed (xE = - 8). 

may contain contributions from all three terms in equation (4.1). Whereas long 
wavelength fluctuations [165] do not seem to contribute significantly [48], surface 
diffusion has been implicated as a major source of spin relaxation in bicontinuous cubic 
liquid crystals [42,62,67]. 

The TCFs describing diffusion over a cubic TPMS can be numerically computed 
along the lines described in 5 5. Due to the high symmetry of these surfaces, however, it 
is reasonable to assume that the TCFs decay exponentially (as for surface diffusion on a 
sphere, cf.equation (5.17)) and to define the correlation times (with il=E or T2) as 

7: = - GSp(O)/cSp(O), (7.12) 

where the dot signifies a time derivative. This definition ensures that the exponential 
TCF approximation is exact to linear order in time [166]. By exploiting the fact that a 
minimal surface can be conformally mapped on to the unit sphere [154,163], it can be 
shown that the initial slope of both TCFs is given exactly by [134] 

@(o) = $D,( K ) ,  (7.13) 

where Ds is the surface diffusion coefficient and ( K )  is the average gaussian curvature 
of the TPMS. The latter quantity is related to the surface area A, (per cubic unit cell) 
and the topology (Euler characteristic, xE) of the TPMS through the Gauss-Bonnet 
theorem [ 1541, 

(7.14) 

Finally, the initial TCFs Gid(0), which are the fluctuation amplitudes A ,  in equation 
(4.6), can be related to a single geometrical parameter, conveniently chosen as the cubic 
order parameter Q = (P,(cos O,,)) [123]. 

2% (K)=-. 
4 
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256 B. Halle et al. 

Spin relaxation studies of macroscopically oriented (single crystal) cubic phases 
have not yet been reported. For powder samples, it is the isotropically averaged TCF 
that is probed. Within the short time approximation in equation (7.12), the effective 
correlation time becomes [134] 

1 
7 '- 6Ds(K)' 

(7.15) 

In table 3 we give the correlation time zs, calculated from equations (7.14) and (7.15) and 
the known surface area and Euler characteristic [ 1671, for several cubic TPMS, among 
them Schwarz's D and P surfaces, the gyroid surface G, and the Neovius surface C(P). It 
is seen that the correlation time zs for surface diffusion on a cubic TPMS is always 
considerably shorter than the correlation time for surface diffusion on a sphere 
inscribed in the cubic unit cell. The monotonic decrease of zS down the table is not due 
to the variation of the surface area (A, increases monotonically down the table), but 
rather to the increasing topological complexity of the surfaces ( - xE increases 
monotonically down the table). A particularly valuable feature of the spin relaxation 
method is its ability to discriminate (uia zS) among different microstructures that belong 
to the same space group, such as the P and C(P) surfaces, and therefore yield the same 
X-ray diffraction indices. Finally, we note that the exact result in equation (7.13) 
remains valid for non-cubic TPMS, for example, the tetragonally and rhombo- 
hedrally distorted D and P surfaces [168], which have been used to model the 
microstructure in non-cubic 3D mesophases [33,34]. 

7.4. Nematic phases 
Three types of nematic phase occur in lyotropic systems [9,13,169-1741: the 

calamitic (N,) and discotic (ND) uniaxial phases and the biaxial phase (NB). All 
lyotropic nematic phases are believed to consist of closed surfactant aggregates 
(micelles), which are necessarily of biaxial shape in the ND phase. The aggregate shape 
in the uniaxial phases is often described in terms of prolate (N,) or oblate (ND) 
spheroids, although some authors argue that the aggregates are biaxial in all three 
nematic phases [126,174]. Although traditionally regarded as members of the liquid 
crystal family, the nematic phases are perhaps more aptly referred to as anisotropic 
fluids, since they lack long range translational order. 

In spin relaxation studies of nematic phases, we encounter two major difficulties. 
First, the fast magnetic alignment of nematic fluids precludes relaxation anisotropy 
measurements with conventional methods (cf. § 3.1). Even if the alignment problem can 

Table 3. Effective correlation time, zs, for diffusion on cubic minimal surfaces. 
~ 

Surface Space group zst 

D Pn3m 0.6108 
P Im3m 0.3732 
G Ia3d 0.2460 
I-WP TmJm 0.1839 

Im3m 0.1397 
FmJm 0.0754 

C(P) 
F-RD 

?In units of the correlation time, aZ/(24Ds), for surface diffusion on a sphere of diameter equal 
to the cubic lattice parameter a. 
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be overcome, the very large adiabatic spectral density Jy,(O), due to long wavelength 
fluctuations (cf. 6 6.3), will probably restrict the useful relaxation experiments to those 
involving the non-adiabatic central line of nuclei with half-integral spin. For these 
reasons, relaxation dispersion measurements may come to play an important role in 
the study of nematic phases. 

The second difficulty in spin relaxation studies of nematic phases is related to their 
microstructure. To specify the microstructure (as defined in 6 1) of a nematic phase, we 
need to determine the size and shape of the aggregates as well as their orientational 
order. This specification requires between two and four parameters, depending on the 
symmetry of the phase and of the aggregates. The dynamic description requires still 
more parameters. 

For simplicity, we consider here only uniaxial nematic phases composed of 
spheroidal aggregates. Two processes contribute to the spectral densities J z ( k o o ) :  
surface diffusion and restricted aggregate reorientation. The corresponding TCFs are 
of the form [133] 

2 

p = o  
G,","(z) = vis$hp gz(z)  + (2 - spO)[gg(z) + snOspOs~emlg",d,(z), (7.1 6, 

The first term describes the restricted tumbling of the spheroidal micelle, while the three 
terms in the sum describe the combined effect of micelle rotation and surface diffusion. 
Snern=(P2(cosQDA)) is the usual nematic order parameter [25], with eDA the 
angle between the aggregate axis and the phase director. The order parameter 
Sshp = (P2(c0s eA,)) with O,, the angle between the local interface normal and the 
aggregate axis, is a purely geometrical quantity, characterizing the aggregate shape 
(assuming a uniform surface distribution of the spin-bearing species). For spheroids of 
axial ratio p [133,175] 

2p2 + 1 + (1 - 4p2)F0, 
2(P2 - 1)(1 +Fob)  

(oblate), Sshp= 

( 7 . 1 7 ~ )  

(7.17 b) 

(7.18 a) 

(7.18 b) 

The reduced TCFs g$(z) for diffusion on a spheroidal surface can be calculated by 
the methods described in 6 5  [133]. The reduced TCFs g$(z) for restricted micelle 
reorientation are more difficult to treat rigorously, since reorientation in a nematic 
phase is a highly cooperative process. As long as we restrict our attention to the six non- 
adiabatic ICFSDs, however, it seems reasonable to model this process as rotational 
diffusior, of individual micelles subject to an even uniaxial mean torque, determined 
self-consistently by the nematic order parameter Sne, [72,73,129-1321. 

If micelle reorientation is slow compared to surface diffusion and compared to the 
Larmor frequency oo, which is typically the case [72], the non-adiabatic ICFSDs are 
unaffected by the reorientational dynamics, and 
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The quantities enclosed by brackets can be expressed, in a model-independent 
way, as linear combinations of the two nematic order parameters S,,, and 
Q,,,= (P,(cos OD,)) [133]. By introducing a plausible one parameter functional form 
for the potential of mean torque, Q,,, can be eliminated as an independent parameter 
[72,176]. The six non-adiabatic ICFSDs are then determined by five parameters: the 
local motion contribution JLoC(O), the residual quadrupole coupling constant X 
(proportional to Vs), the nematic order parameter S,,,, the micellar axial ratio p, and 
the characteristic time a2/Ds for surface diffusion (a is one of the semi-axes of the 
spheroid). One of the parameters 2, S,,,, and p can be eliminated by invoking the 
quadrupole splitting, which is proportional to jSshpSnem [72]. The problem is, of 
course, that the individual ICFSDs are not usually available, since nematic phases do 
not lend themselves to conventional relaxation anisotropy measurements. There are 
then only the two non-adiabatic LFSDs and the quadrupole splitting, which obviously 
do not suffice to determine five parameters. There are two possible solutions to this 
dilemma: to measure the relaxation dispersion or to determine two of the parameters in 
an orientable mesophase with similar local properties [72]. 

The N, and ND phases in the system sodium dodecyl sulphate/water/decanol [ 1771 
have been investigated by spin relaxation (at a single magnetic field) of 2H in the 
a-deuteriated surfactant and of 23Na in the counterion [72,73]. In these studies we 
determined the micelle size (p) and order (S,,,), as well as the viscoelastic properties of 
the phases, over the temperature range where these phases are stable. The axial ratio p 
of the micelles was found to be in the range 3-4 in both phases, with no significant 
temperature dependence. The nematic order parameter S,,, decreases with tempera- 
ture as expected, but near the nematic-isotropic transition the temperature dependence 
is much stronger than predicted by the conventional (Maier-Saupe) mean field theory 
[ 178,1791. This is shown in figure 7. 

In contrast to thermotropic nematics [180], long wavelength fluctuations do not 
seem to contribute significantly to the non-adiabatic spectral densities in lyotropic 
nematics [72,73]. The adiabatic LFSD Jko(0),  on the other hand, is dominated by the 
effects of long wavelength fluctuations and can thus be used to study the viscoelastic 

1 .o 

0.8 

0.6 

0.4 t 
-12 -10 -8 -6 -4 -2 0 

T - Tpq / O C  

Figure 7. Temperature dependence of the nematic order parameter, S,,,, in the N, phase of 
the system sodium dodecyl sulphate/water/decanol, derived from non-adiabatic 23Na 
relaxation data [72]. The curve is the prediction of the Maier-Saupe theory. 
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Figure 8. Temperature dependence of the effective elastic modulus, K, in the N, phase of the 
system sodium dodecyl sulphate/water/decanol, derived from adiabatic 23Na relaxation 
data [73]. 

properties of the nematic fluid. As an example, figure 8 shows the temperature 
dependence of the effective elastic modulus K in the Nc phase of the aforementioned 
system [73], determined from 23Na relaxation data and equation (6 .10a) .  

Our work on spin relaxation in lyotropic liquid crystals has been supported by the 
Swedish Natural Science Research Council (NFR). 
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